from acetone-H₂O gave material with mp 156° dec. Anal. (C₁₂H₁₄ClN₅O₃S), C, H, S, Cl.

Acknowledgments. The authors are indebted to Mr. L. Brancone and staff for microanalyses, and to Mr. W. Fulmor and staff for spectral data. We wish to express our gratitude to Dr. P. Kohlbrenner for his cooperation and to Mr. E. Norton for his work in the preparation of some of the compounds described herein. In addition, we are indebted to the following members of the Experimental Therapeutics Research Section of these Laboratories: Drs. D. Blickens and S. Riggi for hypoglycemic assays, Dr. J. R. Cummings for antihypertensive and diuretic assays, Dr. E. Greenblatt for antidepressant assays, Dr. A. C. Osterberg for analgesic assays, and Dr. A. E. Sloboda for antiinflammatory assays.

References

- R. F. R. Church and M. J. Weiss, J. Org. Chem., 35, 2465 (1970) (paper 2).
- (2) R. F. R. Church, A. S. Kende, and M. J. Weiss, J. Amer. Chem. Soc., 87, 2665 (1965).
- (3) C. S. Szantay, Z. F. Chmielowicz, and T. J. Bardos, J. Med. Chem., 10, 101 (1967); C. J. Paget and C. S. Davis, *ibid.*, 7, 626 (1964).

- Oine, et al.
- (4) E. F. Godefroi and E. L. Wittle, J. Org. Chem., 21, 1164 (1956).
- (5) U. S. Patent 3,345,369 (1967).
- (6) Japan Patent 26694/65; Chem. Abstr., 64, 9738a (1966).
- (7) E. N. Greenblatt and A. G. Osterberg, Toxicol. Appl. Pharmacol., 7, 566 (1965).
- (8) (a) J. R. Cummings, J. D. Haynes, L. M. Lipchuck, and M. A. Ronsberg, *J. Pharmacol. Exp. Ther.*, 128, 414 (1960); (b) J. M. Little and C. Cooper, Jr., *Fed. Proc.*, *Fed. Amer. Soc. Exp. Biol.*, 9, 296 (1950).
- (9) K. F. Chen, R. C. Anderson, M. C. McCowen, and P. N. Harris, J. Pharmacol. Exp. Ther., 121, 272 (1957).
- (10) C. Von Holt, Biochim. Biophys. Acta, 125, 1 (1966).
- (11) W. G. Karr, W. P. Belk, and Ö. H. Petty, J. Pharmacol. Exp. Ther., 36, 611 (1929).
- (12) L. P. Krall and R. F. Bradley, Ann. Intern. Med., 50, 586 (1959).
- (13) C. Corredor, J. Biol. Chem., 244, 1212 (1969).
- (14) J. R. Cummings, J. L. Grace, and C. N. Latimer, J. Pharmacol. Exp. Ther., 141, 349 (1963).
- (15) D. Blickens and S. J. Riggi, *Toxicol. Appl. Pharmacol.*, 14, 393 (1969).
- (16) L. C. Hendershot and J. Forsaith, J. Pharmacol. Exp. Ther., 125, 237 (1961).
- (17) S. Goldstein and M. Schnall, Arch. Int. Pharmacodyn. Ther., 144, 269 (1963).
- (18) E. Cohen, B. Klarberg, and J. R. Vaughan, Jr., J. Amer. Chem. Soc., 82, 2731 (1960).

4-Oxo-1,2,3,4-tetrahydroquinazolines. 3.¹ Synthesis and Choleretic Activity of Quinazoline Derivatives

Kentaro Okumura, Yoshihisa Yamada, Toyonari Oine,* Junichi Tani, Takashi Ochiai, and Ichizo Inoue

Chemical Research Laboratory, Tanabe Seiyaku Co., Ltd., Osaka, Japan. Received September 2, 1971

A series of 1-tert-aminoacetyl-2-alkyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazolines and their analogs has been synthesized and tested for choleretic activity. 1-Morpholinoacetyl-2-methyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazoline has been found to be a most effective choleretic agent. From the structure-activity relationship, it was concluded that the moiety, morpholino-C-C-N(alkyl)-Ph, is essential for choleretic activity.

Studies on 4-oxo-1,2,3,4-tetrahydroquinazolines,^{1,2} directed toward new analgetic agents, have shown that some 1-tert-aminoacetyl-2-methyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazolines increased bile secretion. Especially 1morpholinoacetyl-2-methyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazoline possessed high activity. Meanwhile, another group has independently reported the choleretic activity of similar compounds.³⁻⁶ Since choleretic agents are useful for treatment of cholelithiasis and jaundice, it seemed of interest to synthesize additional derivatives in order to seek a more effective compound and, at the same time, to study their structure-activity relationships. 1-Dimethylaminoacetyl-, and 1-diethylaminoacetyl-2-methyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazoline did not show significant activity in contrast to the high potency of 1-morpholinoacetyl-2-methyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazoline. This suggested that the active center would be the cyclic amino or the O-containing amino moiety in the side chain rather than the quinazoline skeleton itself. The introduction of a substituent at the 2 position or on the fused benzene ring of the quinazoline moiety should have some effect on toxicity and activity. Therefore the new quinazoline derivatives were synthesized and subjected to pharmacological investigation.

Most of the quinazoline derivatives IV were prepared from the quinazolines I by methods developed in our laboratory.² Reduction of the quinazoline hydrochlorides I·HCl with

NaBH₄ in THF-Diglyme gave the corresponding hydroquinazolines II in good yields. The reduction also proceeded readily in the reaction of the quinazoline-BF₃ complex with a 0.75 M ratio of NaBH₄ in THF to afford the hydroguinazoline in high yield (around 90%). Thus the reducing species in the reaction was diborane. In the case of 2-methyl-3phenyl-8-chloro-4(3H)-quinazolinone · HCl, the hydroquinazoline IIi (Y = 8-Cl, $R^1 = CH_3$) was obtained in very low yield. This failure was due to the low yield of diborane that was generated in the reaction because of the low basicity of the quinazoline I (Y = 8-Cl, $R^1 = CH_3$). In fact the quinazoline \cdot HCl (I \cdot HCl, Y = 8-Cl, R¹ = CH₃) released HCl even on heat drying. Therefore, the reduction of the more acidic salt of the quinazoline I (Y = 8-Cl, $R^1 = CH_3$) was investigated. Treatment of the quinazoline hydroperchlorate $(I-HClO_4, Y = 8-Cl, R^1 = CH_3)$ with NaBH₄ in Diglyme afforded IIi in an improved yield (42.6%). 2-Isopropyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazoline (IIb) was prepd by ring closure of 2-aminobenzanilide with isobutyraldehyde in the presence of p-TsOH. 2,3-Diphenyl-4-oxo-1,2,3,4tetrahydroquinazoline (IId)³ was obtained by the reaction of 2-aminobenzanilide with PhCHO in a similar manner. Yields and physical constants for the hydroquinazolines II are shown in Table I. Acylation of the hydroquinazolines II with ClCH₂COCl was carried out in the presence of K_2CO_3 , Et_3N , or pyridine (best) to afford the chloroacetylhydroquinazolines III. In the case of IId, the chloroacetylaScheme I

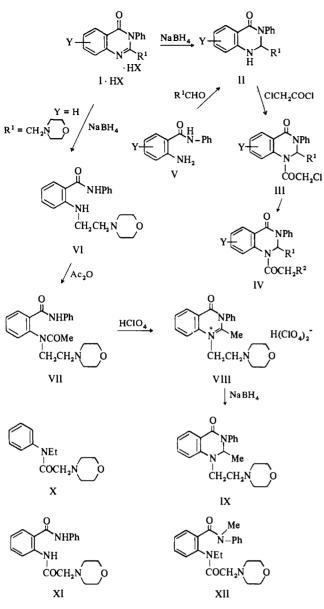
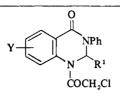


Table I. Hydroquinazolines II

tion proceeded successfully only with pyridine to give 1chloroacetyl-2,3-diphenyl-4-oxo-1,2,3,4-tetrahydroquinazoline (IIId) that had not been obtained by Bonola.³ The hydroquinazolines with low basicity, or low solubility, 2-methyl-3-phenyl-8-chloro-4-oxo-1,2,3,4-tetrahydroquinazoline (IIi), 2-methyl-3-phenyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinazoline (IIm), and 2-methyl-3-phenyl-6-acetamido-4-oxo-1,2,3,4-tetrahydroquinazoline (IIn), could not be acylated under the same conditions. This was overcome by treating these hydroquinazolines (IIi, IIm, and IIn) with chloroacetic anhydride at 50-100° without solvent (see Table II). The target quinazoline derivatives IV were prepd in good yield by condensation of the chloroacetylhydroquinazolines (III) with amines (Table III).

1-Morpholinoethyl-2-methyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazoline (IX) was prepd from 2-morpholinomethyl-3-phenyl-4(3H)-quinazolinone⁷ (I, Y = H, \mathbb{R}^1 = morpholinomethyl) by the route illustrated in Scheme I. Reduction of the quinazoline I (Y = H, R^1 = morpholinomethyl) with excess NaBH₄ at 100-110° in Diglyme afforded 2-[N-(2morpholinoethyl)amino]benzanilide (VI) in 64.6% yield. Acetylation of the anilide VI with Ac₂O gave 2-[N-(2morpholinoethyl)acetamido]benzanilide (VII), which was converted to 1-(2-morpholinoethyl)-2-methyl-3-phenyl-4oxo-1,2,3,4-tetrahydroquinazoline (IX) via 1-(2-morpholinoethyl)-2-methyl-3-phenyl-4-oxo-3,4-dihydroquinazolinium diperchlorate (VIII) as described previously.¹ The structurally related compounds, X, XI, and XII, were prepared from the corresponding starting materials for evaluation of the active part in the structure of the quinazoline derivatives IV for choleretic activity.


Choleretic Effect and Structure-Activity Relationship. The derivatives were screened in rats for their choleretic properties. The minimum doses which increased the bile flow by 50% during 30 min after the administration of these compounds are summarized in Table IV. Compd 9 showed the highest activity (50% increasing dose = 2.8 mg/kg), though Bonola³ has reported that it has little activity. Most of the analogs that have the morpholino group in the side chain showed the same order of activity. Transformation of the morpholinoacetyl of 9 to the morpholinoethyl group reduced the activity slightly and so did the re-

	H							
No.	Y	R ¹	Yield, %	Mp, °C	Recrystn ^a solvent	Formula		
IIa	Н	Et	89.8	151-153	A	C ₁₆ H ₁₆ N ₂ O		
b	н	i-C ₃ H ₇	62.3	184-186	Α	$C_{17}H_{18}N_2O^b$		
с	н	n-Č₄H,	86.9	128-130	С	$C_{18}H_{20}N_{2}O$		
d	н	Ph	95.5	207–209 ^c	В	C ₂₀ H ₁₆ N ₂ O		
e	н	FCH,	80.0	148-150	Α	C ₁₅ H ₁₃ FN ₂ O		
f	5-C1	Me	52.3	179-181	В	C ₁₅ H ₁₃ CIN ₂ O		
g	6-C1	Me	79.2	193-195	В	C ₁₅ H ₁₃ ClN ₂ O		
ĥ	7-Cl	Me	90.0	198-200	В	C ₁₅ H ₁₃ ClN ₂ O		
i	8-C1	Me	42.6	162-164	Α	C ₁₅ H ₁₃ ClN ₂ O		
j	6-Me	Me	91.0	177-178	В	C ₁₆ H ₁₆ N ₂ O		
k	6-MeO	Me	94.2	160-161	В	$C_{16}H_{16}N_{2}O_{2}$		
1	6-F	Me	87.3	167-169	Α	$C_{15}H_{13}FN_2O$		
m	6-NO2	Me	97.8	280 ^d	E	$C_{15}H_{13}N_{3}O_{3}$		
n	6-NHÃc	Me	55.0	255-258	D	$C_{17}H_{17}N_{3}O_{2}$		
0	7-NO2	Me	100	230-233 ^d	В	C ₁₅ H ₁₃ N ₃ O ₃		
р	6,7-CH ₂ O ₂	Me	87.0	230-231	В	C ₁₆ H ₁₄ N ₂ O ₃		

0

₹Ph

^aA = *i*-PrOH; B = EtOH; C = EtOH-hexane; D = 50% EtOH; E = DMF. ^bPrepd by method C, C: calcd, 76.66; found, 76.24. ^cRef 3. ^dDec.

					Recrystn ^a	Recrystn ^a	
No.	Y	R ¹	Yield, %	Mp, °C	solvent	Formula	
IIIa	Н	Et	46.2	138-139	Α	C ₁₈ H ₁₇ ClN ₂ O ₂	
b	Н	i-C ₃ H ₇	70.0	121-123	В	C ₁₉ H ₁₉ ClN ₂ O ₂	
с	Н	n-C₄H,	53.7	114-116	Α	$C_{20}H_{21}CIN_{2}O_{2}$	
d	Н	Ph	70.0	179-181	С	$C_{22}H_{17}CIN_2O_2$	
e	Н	FCH,	81.0	128-129	Α	$C_{17}H_{14}CIFN_2O_2$	
f	5-Cl	Me	83.2	192-194	В	C ₁₇ H ₁₄ Cl ₂ N ₂ O ₂	
g	6-C1	Me	71.4	199-201	D	C ₁₇ H ₁₄ Cl ₂ N ₂ O ₂	
ĥ	7-Cl	Me	89.2	149-150	Α	$C_{17}H_{14}Cl_2N_2O_2$	
i	8-C1	Me	71.0 ^b	114-115	Α	$C_{17}H_{14}Cl_2N_2O_2$	
j	6-Me	Me	89.2	199-201	С	C ₁₈ H ₁₇ ClN ₂ O ₂	
k	6-MeO	Me	91.7	174-176	С	$C_{18}H_{17}CIN_2O_3$	
1	6-F	Me	93.9	169-171	В	$C_{17}H_{14}CIFN_2O_2$	
m	6-NO,	Me	78.0 ^b	231-232	E	C ₁₇ H ₁₄ CIN ₃ O ₄	
n	6-NHÃC	Me	89.0	248-249	E	$C_{19}H_{18}CIN_{3}O_{3}$	
0	7-NO2	Me	71.0	196-198	В	$C_{17}H_{14}CIN_{3}O_{4}$	
р	6,7-CH ₂ O ₂	Me	81.0	220-222	В	C ₁₈ H ₁₅ ClN ₂ O ₄	

 ${}^{a}A = i$ -PrOH; B = EtOH; C = PhH; D = THF; E = DMF-EtOH. ${}^{b}Prepd$ by method B.

placement of 2-Me with a longer alkyl group.

It is difficult to find a definite relation between the substituents on the fused benzene ring of the quinazolines and the choleretic activity. However, in view of the low activity of 4 and 5 and the maintenance of activity in X and XII which contain structural moiety of 9, the morpholino-C-C-N(alkyl)-Ph appears to be the active center and the quinazoline moiety to be an auxiliary group.

Experimental Section

Pharmacological Method. (1) Choleretic Activity. Adult male Wister King rats (250-300 g) were anesthetized with urethane (1.2 g/kg) sc and placed on the animal board in the spin position. The abdomen was opened and a polyethylene tube was inserted centrally into the common bile duct. After the control bile flow was detd, the test compds which were dissolved in saline or suspended in 0.5% CMC soln were injected into the carotid vein. Then the bile flow was detd volumetrically for 30 min.

(2) Behavioral Observation. Adult male ddk strain mice (20-22 g) were used, in 4 groups consisting each of 6 mice. The test compds were dissolved in saline or suspended in 0.5% CMC soln so that each dose could be delivered at 0.1 ml/10 g of body weight. After the test compds were administered ip, the behavioral changes which were shown in Table IV were observed.[†]

Chemical Methods. ‡ 2-Methyl-6-fluoro-4-oxo-3,1-benzoxazine. A mixt of 5-fluoroanthranilic acid⁸ (20.0 g, 0.129 mole) and Ac₂O (132 g, 1.29 moles) was refluxed for 2.5 hr. The mixt was concd under reduced pressure and the residue was triturated with *i*·Pr₂O to afford almost pure product (19.0 g, 82.3%). Recrystn from EtOAc afforded a pure sample as colorless needles, mp 129-130°. Anal. (C₉H₆FNO₂) C, H, N.

Other substituted 4-oxo-3,1-benzoxazines were prepd from the corresponding anthranilic acid in the same manner.

2-Methyl-6,7-methylenedioxy-4-oxo-3,1-benzoxazine was obtained as pale yellow needles (EtOAc), mp 166-168°. Anal. $(C_{10}H_2NO_4)$ C, H, N.

‡Melting points were uncorrected and were detd on a Yamato apparatus MP-1. The nmr spectra were detd on a Hitachi Perkin-Elmer R-20A instrument (Me₄Si). Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

2-Methyl-7-nitro-4-oxo-3,1-benzoxazine was obtained as pale yellow prisms (EtOAc), mp $138-140^{\circ}$. Anal. (C₉H₆N₂O₄) C, H, N.

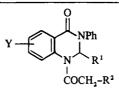
Quinazolines (I). Method A. From Substituted 4-Oxo-3,1-benzoxazine. 2-Methyl-3-phenyl-6-fluoro-4(3H)-quinazolinone. A mixt of 2-methyl-6-fluoro-4-oxo-3,1-benzoxazine (20.0 g, 0.112 mole) and PhNH₂ (11.5 g, 0.123 mole) was heated at 160° for 2 hr. The mixt which crystd on cooling was triturated with *i*-PrOH and the crystals were collected by filtration to give almost pure product (21.8 g, 76.8%), mp 172-174°. Recrystn from EtOH afforded an analytically pure sample as colorless prisms, mp 174-176°. Anal. ($C_{15}H_{11}FN_2O$) C, H, N.

Other new quinazolines were prepd in the same manner.

2-Methyl-3-phenyl-8-chloro-4(3H)-quinazolinone was obtained as colorless needles (dioxane), mp 237-238°. *Anal.* (C₁₅H₁₁ClN₂O) C, H, N.

2-Methyl-3-phenyl-6,7-methylenedioxy-4(3H)-quinazolinone was obtained as colorless prisms (EtOH), mp 163-165°. Anal. $(C_{16}H_{12}N_2O_3)$ C, H, N.

2-Methyl-3-phenyl-7-nitro-4(3H)-quinazolinone was obtained as pale yellow prisms (DMF-EtOH), mp 203-205°. Anal. $(C_{13}H_{11}N_{3}O_{3})$ C, H, N.


2-Methyl-3-phenyl-6-methoxy-4(3H)-quinazolinone was obtained as colorless needles (EtOH), mp 180-181°. Anal. $(C_{16}H_{14}N_2O_2)$ C, H, N.

Method B. 2-Fluoromethyl-3-phenyl-4(3H)-quinazolinone. A mixt of 2-chloromethyl-3-phenyl-4(3H)-quinazolinone⁷ (20.0 g, 0.075 mole), KF (13.0 g, 0.225 mole), and ethylene glycol (14 ml) was heated with stirring at 145-155° (inner temp) for 2 hr. After cooling, the mixt was poured into H_2O and extd with PhH. The PhH layer was washed, dried, and evapd. The residual oil was triturated with *i*-PrOH (40 ml) to afford crude cryst product (12.6 g). mp 91-99°. Recrystn from *i*-PrOH (30 ml) gave pure material (11.0 g, 57.7%) as colorless needles, mp 101-103°. The mother liquor was collected and distd under reduced pressure (bp 160-165°, 0.07 mm) to give an oil (2.5 g) which crystd on cooling, mp 95-99°. Recrystn from *i*-PrOH afforded another crop (2.2 g, 11.5%), mp 99-102°. Total yield 13.2 g (69.2%). Anal. (C₁₆H₁₃FN₂O) C, H, N. The hydrochloride had mp 195-198° dec. Anal. (C₁₆H₁₃FN₂O·HCl) C, H, N.

Method C. 2-Butyl-3-phenyl-4(3H)-quinazolinone. To a stirred soln of anthranilic acid (40.5 g, 0.34 mole) in 0.2 N NaOH (1700 ml) were added gradually valeryl chloride (46.5 g, 0.34 mole) and 0.2 N NaOH (1700 ml) during 1 hr at 0°. The mixt was stirred for 50 min at 0° and then for 40 min at room temp. The reaction mixt was acidified with 5 N HCl (88 ml) and the crystals were collected by filtration. Recrystn from 50% aq EtOH gave 2-(N-valerylamino)-benzoic acid (31 g) as colorless prisms, mp 117-119°. To a soln of this acid (26 g, 0.118 mole) and PhNH₂(11 g, 0.118 mole) in PhMe (300 ml) was added PCl₃ (6.5 g, 0.047 mole) at room temp. The mixt was refluxed for 3 hr. After cooling, it was decompd with 10%

 $[\]dagger$ In general, lachrymation, salivation, and soft defecation were observed when the known choleretic agents, such as dehydrocholic acid, $N \cdot (4-hydroxyphenyl)$ salicylamide, and $2 \cdot (1 \cdot hydroxycyclo-hexyl)$ butyric acid, were administered. These behavioral changes were mainly tested.

Table III. Quinazoline Derivatives IV

Compd No.	Y	R ¹	R²	Yield, %	Mp,°C	Recrystn ^a solvent	Formula
1	Н	Ме	Pyrrolidino	87.5	234-236 ^b	G	$C_{21}H_{23}N_3O_2 \cdot HCl$
2	Н	Me	NH(CH ₂) ₂ OMe	70.0	203-205 ^b	G	C ₂₀ H ₂₃ N ₃ O ₃ · HCl
3	H	Me	NH(CH ₂) ₃ OMe	86.0	202-203 ^b	Ğ	$C_{21}H_{25}N_3O_3 \cdot HCl$
4	Ĥ	Me	$N(CH_2CH_2OMe)_2$	100.0	Amorph	0	-211-251-303 Her
5	Н	Me	NNMe	71.0	198–200 ^b	Ε	$C_{22}H_{26}N_4O_2 \cdot 2HCl \cdot 1.5H_2O^C$
6	Н	Me	NNPh	75.5	135-137 165-167 ^b	A	$C_{27}H_{28}N_4O_2$ $C_{27}H_{28}N_4O_2$ ·HCl·2H ₂ O ^d
7	Н	Me]		60.5	106-108	G B	$C_{27}H_{28}N_4O_2 \cdot HC1 \cdot 2H_2O^{-1}$ $C_{21}H_{23}N_3O_2S$
		}	N		237–238 ^b	Е	$C_{21}H_{23}N_3O_2S \cdot HCl$
8	Н	нј	Ĩ [™] 3	60.0	140-142	В	$C_{20}H_{21}N_{3}O_{2}S$
				• • •	236-2375	I	$C_{20}H_{21}N_{3}O_{2}S \cdot HCl \cdot 0.5H_{2}O$
9	Н	Me	Morpholino	94.0	133-135	В	$C_{21}H_{23}N_{3}O_{3}$
					239-240 ^b	I	$C_{21}H_{23}N_3O_3 \cdot HCl$
10	Н	CH ₂ F	Morpholino	95.0	130-132	В	$C_{21}H_{22}FN_{3}O_{3}$
					253-254 ^b	I	$C_{21}H_{22}FN_3O_3 \cdot HCl$
11	Н	Et	Morpholino	90.2	243-244	E	C₂₂H₂₅N₃O₃ · HCl
12	Н	Et	NH(CH,), OMe	74.4	215-216 ^b	G	C ₂₁ H ₂₅ N ₃ O ₃ ·HCl
13	Н	i.C ₃ H ₇	Morpholino	95.0	241-242 ^b	Е	$C_{23}H_{27}N_{3}O_{3} \cdot HCl$
14	Н	n·C₄H,	Morpholino	85.0	244-245 ^b	Ε	C ₂₄ H ₂₉ N ₃ O ₃ · HCl
15	н	n∙C₄H9	N_NPh	60.8	233-235 ^b	E	$\mathrm{C_{30}H_{34}N_4O_2}\cdot\mathrm{HCl}$
16	Н	Ph	Morpholino	74.0	133-134	С	C ₂₆ H ₂₅ N ₃ O ₃
					260-261 ^b	I	$C_{26}H_{25}N_3O_3 \cdot HCl$
17	5-Cl	Me	Morpholino	83.0	146-148	В	$C_{21}H_{22}CIN_3O_3$
					244-246 ⁰	Ι	$C_{21}H_{22}CIN_{3}O_{3} \cdot HCl \cdot 0.5H_{2}O$
18	6-C1	Me	Morpholino	86.9	175-176 248-250 ^b	В	$C_{21}H_{22}CIN_3O_3$
19	7-C1	Me	Morpholino	94.0	128-130	I B	$C_{21}H_{22}CIN_{3}O_{3} \cdot HCl \cdot 0.5H_{2}O$ $C_{21}H_{22}CIN_{3}O_{3}$
19	/-С1	Me	Morphonito	94.0	234-235 ^b	I	$C_{21}H_{22}CIN_{3}O_{3} \cdot HCl$
20	8-C1	Ме	Morpholino	69.5	110-112	D	$C_{21}H_{22}CIN_{3}O_{3}$
20	0-01	Me	Morpholino	07.5	221-223 ^b	Ĩ	$C_{21}H_{22}CIN_{3}O_{3} \cdot HCl$
2 1	6-Me	Me	Morpholino	92.0	122-123	Ď	$C_{22}H_{25}N_{3}O_{3}^{e}$
-	0 110	1,10	Morphonito	2.0	239-240 ^b	Ĕ	$C_{22}H_{25}N_{3}O_{3}$ ·HCl
22	6-MeO	Me	Morpholino	83.8	116-118	D	$C_{22}H_{25}N_{3}O_{4}$
	0-14100	MC	Morphonno	05.0	230-231 ^b	I	$C_{22}H_{25}N_{3}O_{4} \cdot HCl \cdot 0.5H_{2}O$
23	6-F	Me	Morpholino	94.3	169-171	Ē	$C_{21}H_{22}FN_{3}O_{3}$
25	0-1	MIC	Morphonno	24.5	244-246 ^b	Ĩ	$C_{21}H_{22}FN_3O_3 \cdot HCl$
24	6-NO ₂	Me	Morpholino	92.0	171-173	Ē	
24	0-1402	INIC	Morphonno	92.0	236-238 ^b	I	$C_{21}H_{22}N_4O_5$
25	C MILLA	Ma	Maunhallin e	010			$C_{21}H_{22}N_4O_5 \cdot HCl \cdot H_2O$
25	6-NHAc	Me	Morpholino	84.8	253-254 235-237b	F	$C_{23}H_{26}N_4O_4$
	2 110	16	M. I. Bar	01.0		I	C ₂₃ H ₂₆ N ₄ O ₄ HCl
2 6	7-NO ₂	Me	Morpholino	91.0	182-184	E	$C_{21}H_{22}N_4O_5$
				60.08	230-231 ^b	Н	C ₂₁ H ₂₂ N ₄ O ₅ ·HCl
27	7-NH ₂	Me	Morpholino	63.0 ^g	207–209 242–244 ^b	B E	$C_{21}H_{24}N_4O_3^f$
28	7-NHAc	Me	Morpholino	27.0	222-225	B	$C_{21}H_{24}N_4O_3 \cdot HCl$ $C_{23}H_{26}N_4O_4$
28 29		Me	Morpholino	72.0	163-167	B	C H N O
47	6,7-CH ₂ O ₂	MC	Morpholino	12.0	258-260 ^b		$C_{22}H_{23}N_3O_5$
20	CNILOU	Ma	Manufa the -	3.8 ^{g,h}		I	$C_{22}H_{23}N_{3}O_{5}$ ·HCl
30	6-NHOH	Me	Morpholino	$4.0^{g,h}$	201-203	E	$C_{21}H_{24}N_4O_4$
31	6-NH ₂	Me	Morpholino		174-176	B	$C_{21}H_{24}N_4O_3$
32	7-NHOH COMe	Me	Morpholino	96.0 ^g	195–197 ⁱ	Е	$C_{21}H_{24}N_4O_4$
33	7-N OCOMe	Ме	Morpholino	54.0	146-148	Ε	$\mathrm{C_{25}H_{28}N_4O_6}$

 a A = dioxane-*i*·PrOH; B = *i*·PrOH; C = *i*·Pr₂O; D = *i*·PrOH-*i*·Pr₂O; E = EtOH; F = DMF-EtOH; G = EtOH-Et₂O; H = MeOH; I = MeOH-Et₂O. b Dec of hydrochloride. c H: calcd, 6.53; found, 6.08. d C: calcd, 63.19; found, 63.70. e N: calcd, 11.08; found, 11.49. f C: calcd, 66.30; found, 65.89. g Prepd by reduction of the corresponding NO₂-compds. h Isolation yield. i Dec.

aqueous Na₂CO₃ soln. The PhMe layer was sepd, washed with H₂O, dried (Na₂SO₄), concd, and distd under reduced pressure to give an oil [4.7 g, bp 230° (bath temp), 0.05 mm] which on cooling crystd, mp 109-111°. Recrystn from *i*-PrOH gave an analytically pure sample as colorless prisms, mp 110-112°. Anal. (C₁₈H₁₈N₂O) C, H, N. The hydrochloride had mp 200-207° dec. Anal. (C₁₈H₁₈N₂O·HCl) C, H, N.

Hydroquinazolines (II). Method A. Reduction of Quinazaline.

HCl (I·HCl) with NaBH₄. 2,6-Dimethyl-3-phenyl-4-0x0-1,2,3,4tetrahydroquinazoline (IIj). To a stirred suspension of 2,6-dimethyl-3-phenyl-4(3H)-quinazoline ·HCl² (14.3 g, 0.05 mole) in THF (200 ml) was added a soln of NaBH₄ (2.25 g, 0.06 mole) in Diglyme (70 ml) during 2 hr at 5-7°. The mixt was stirred for 30 min at the same temp. Dil aqueous AcOH was added to the mixt until H₂ evolution ceased, and the solvent was removed under reduced pressure. The residue was treated with H₂O (600 ml) to

Table IV. Su	mmarv of	Pharmacol	ogical	Observation
--------------	----------	-----------	--------	-------------

	Max tolerated	Behavior in max	Choleretic
	dose, mg/kg	tolerated dose,	act., ^a mg/kg
Drug No.	ip	ip	iv
1	100	rr	13.0
2	100	sed	25.9
2 3 4	100	s, sed	_
4	≥300	sed, rr	47.6 ^b
5	≥300	a, tr, j, rr	50.8 ^b
6	≥300	sed	
7	≥300	Unchanged	
8	≥300	Unchanged	
9	≥300	l, s, d	2.8
10	≥300	l, s, d	3.3
11	100	l, s, d	6.9
13	100	t, v, tr	15.7
14	100	l, s	6.8
16	300	l, s, d, a, t, tr, st	
17	≥100	t, v, 1	26.7
18	100	1	6.0
19	100	S	8.4
20	100	1	12.4
21	≥300	l, d, rr	8.5
2 2	≥300	l, s, d, a	4.1
23	100	l, s, d	7.5
24	100	l, s, m	15.6
25	≥300	l, s	15.4
2 6	≥ 300	1, s, t	8.8
27	≥ 300	l, s, a, rd	10.8
28	≥300	l, rr	8.5
IX	100	1, s, d	8.2
Х	≥300	s, t, tr, l	8.0
Xl	≥300	sed	
XII	≥300	a, t, tr, l	8.2
Moquizone ^c	≥300	l, s, d	5.7
Dehydrocolic		l, s	10.3
acid			
<i>p</i> ·Hydroxypheny	1	l, s	10.2
salicylamide			

⁴Dose which increased the bile flow by 50%. Blanks were not tested because of insolubility. Behavior; 1: lacrimation, s: salivation, d: soft defecation, rr: loss of righting reflex, tr: tremor, v: vocalization, sed: slight sedation, t: occasional elevation of the tail, a: ataxia, j: jumping, st: stretching, rd: slight respiratory depression, m: elevation of the motility. ^bCalcd value. ^cSee ref 6.

give a cryst product. The product was collected by filtration and dried to afford 12.2 g of IIj. Recrystn from EtOH (80 ml) gave 11.5 g (91%) of colorless prisms, mp 176-178°. Anal. $(C_{16}H_{16}N_2O)$ C, H, N.

Method B. Reduction of 2-Methyl-3-phenyl-8-chloro-4(3H)quinazolinone Hydroperchlorate (I-HClO₄, Y = 8-Cl, R¹ = Me) with NaBH₄. To a stirred suspension of the quinazoline hydroperchlorate (I-HClO₄) (Y = 8-Cl, R¹ = Me, 12.0 g, 0.033 mole) in Diglyme (250 ml) was added gradually a soln of NaBH₄ (1.6 g, 0.042 mole) in Diglyme (80 ml) during 5 hr at 0-2°. The mixt was stirred for 2 hr at this temp. Dil aqueous AcOH was added until H₂ evolution ceased and the mixt was poured into cold H₂O (4000 ml) to give a cryst product. This was collected by filtration to afford crude 2methyl-3-phenyl-8-chloro-4-0x0-1,2,3,4-tetrahydroquinazoline (IIi, 8 g). Recrystn from EtOH gave unchanged quinazoline (3.65 g, 41.5%) as colorless needles. The mother liquor was concd under reduced pressure and the residue was recrystd from *i*-PrOH to afford pure Ili (3.75 g, 42.6%) as colorless prisms, mp 162-163°. Anal. (C₁₅H₁₃ClN₂O) C, H, N.

Method C. Reaction of 2-Aminobenzanilide with Aldehyde. 2-Isopropyl-3-phenyl-4-0x0-1,2,3,4-tetrahydroquinazoline (IIb). To a soln of 2-aminobenzanilide (21.2 g) and p-TsOII (0.4 g) in EtOH (300 ml) was added isobutyraldehyde (21 g) and the mixt was stirred at room temp for 6 hr. The crystals were collected by filtration to give crude product (12.5 g), mp 180-182°. A second crop (5.0 g) was obtd from the filtrate by evapn of the solvent. Recrystn from EtOH afforded pure IIb as colorless prisms, mp 184-186°. Anal. ($C_{12}H_{18}N_2O$) C, H, N.

Chloroacetylhydroquinazolines (III). Method A. Chloroacetylation with Chloroacetyl Chloride. 1-Chloroacetyl-2-methyl-3-phenyl-6-fluoro-4-oxo-1,2,3,4-tetrahydroquinazoline (IIII). To a stirred soln of III (6.4 g, 0.025 mole) and pyridine (3.55 g, 0.045 mole) in PhH (400 ml) was added dropwise CICH₂COCI (4.25 g, 0.0375 mole) at room temp. The mixt was stirred at the same temp for 2.5 hr, then washed (H₂O), dried, and concd to dryness under reduced pressure to give almost pure product (7.8 g, 93.9%), mp 167-169°. Recrystn from EtOH gave colorless leaflets, mp 169-171°. Anal. $(C_{17}H_{14}CIFN_2O_2)$ C, H, N.

Method B. Chloroacetylation with Chloroacetic Anhydride. 1-Chloroacetyl-2-methyl-3-phenyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinazoline (IIIm). A mixt of IIm (8.0 g, 0.0288 mole) and chloroacetic anhydride (14.4 g, 0.0864 mole) was heated at 100° for 20 hr. After cooling the mixt was crystd by trituration with Et_2 0. The crystals were collected by filtration and washed with EtOH to afford crude product (9.0 g), mp 210-215°. Recrystn from DMF-EtOH (1:1, 350 ml) gave pure sample (8.1 g, 78.2%) as colorless prisms, mp 231-232°. Anal. (C₁₇H₁₄ClN₃O₄) C, H, N.

Quinazoline Derivatives. Method A. 1-Morpholinoacetyl-2methyl-3-phenyl-6-fluoro-4-oxo-1,2,3,4-tetrahydroquinazoline. A soln of 1-chloroacetyl-2-methyl-3-phenyl-6-fluoro-4-oxo-1,2,3,4tetrahydroquinazoline (IIII, 3.0 g, 0.009 mole) and morpholine (3.9 g, 0.045 mole) in THF (150 ml) was stirred at 50° for 5 hr. The mixt was concd under reduced pressure and the residue was dissolved in PhH. The PhH soln was washed with H_2O , dried (K_2CO_3), and concd to dryness under reduced pressure to give cryst residue, which was triturated with *i*-Pr₂O to afford almost pure product (3.25 g, 94.3%), mp 168-170°. Recrystn from EtOH gave pure sample as colorless prisms, mp 168-170°. Anal. ($C_{21}H_{22}FN_3O_3$) C, H, N.

Method B. 1-Morpholinoacetyl-2-methyl-3-phenyl-7-amino-4oxo-1,2,3,4-tetrahydroquinazoline HCl. A mixt of 1-morpholinoacetyl-2-methyl-3-phenyl-7-nitro-4-oxo-1,2,3,4-tetrahydroquinazoline HCl (2.0 g, 0.0045 mole), 5% Pd/C (0.4 g), and MeOH (200 ml) was shaken under H₂ (2.5 kg/cm²), the theoretical vol of H₂ being absorbed in 3 hr at room temp. The catalyst was filtered off and the filtrate was concd under reduced pressure. The residue was recrystd from EtOH to give almost pure product (0.87 g) as colorless needles, mp 238-240° dec. A further crop (0.31 g) was obtd from the mother liquors, total yield 1.18 g (63%). Recrystn from EtOH gave pure sample as colorless needles, mp 242-244°. A nal. (C₂₁H₂₄N₄O₃·HCl) C, H, N. The free base was obtd from the hydrochloride by neutralization of the aqueous soln with NaHCO₃, followed by filtration. It crystallized from *i*-PrOH as colorless prisms, mp 207-209°. Anal. (C₂₁H₂₄N₄O₃) H, N; C: calcd, 66.30; found, 65.89.

2-[N-(2-Morpholinoethyl)amino]benzanilide (VI). To a soln of 2-morpholinomethyl-3-phenyl-4(3H)-quinazolinone⁷ (13.0 g, 0.04 mole) in Diglyme (100 ml) was added portionwise NaBH₄ (2.0 g, 0.053 mole) and the mixt was stirred at 100-110° for 6 hr. The mixt was concd under reduced pressure and the residue was decompd with dil aqueous AcOH. The crystals which had formed were collected by filtration to give crude product (10.5 g), mp 115-118°. Recrystn from *i*-PrOH afforded a pure sample (8.4 g, 64.6%) as colorless prisms, mp 125-127°. Anal. ($C_{19}H_{29}N_3O_2$) C, H. N.

2. [N-(2-Morpholinoethyl) acetamido [benzanilide (VII). A mixt of VI (6.0 g, 0.018 mole) and Ac₂ O (24.0 g) was heated with stirring at 50-60° for 4 hr. Excess Ac₂O evapd under reduced pressure and the residue was poured into aqueous K₂CO₃ soln. The oil was extd with PhH. The benzene layer was dried (K₂CO₃) and concd to dryness. The residue was triturated with Et₂O and the crystals were collected by filtration to give VII (6.5 g, 94.2%), mp 139-141°. Recrystn from *i*-PrOH-*i*-Pr₂O (1:1) afforded pure sample as colorless prisms, mp 140-142°. Anal. (C₂₁H₂₅N₃O₃) C, H, N. 1-(2-Morpholinoethyl)-2-methyl-3 phenyl-4-oxo-1,2,3,4-tetra-

1-(2-Morpholinoethyl)-2-methyl-3-phenyl-4-oxo-1,2,3,4-tetrahydroquinazoline (IX). To a soln of VII (5.5 g) in EtOH (100 ml) was added excess 60% HClO₄. The mixt was warmed at 60-70° for 1 hr and concd under reduced pressure. After cooling, the pptd crystals were collected by filtration to give crude 1-(2-morpholinoethyl)-2-methyl-3-phenyl-4-oxo-3,4-dihydroquinazolinium diperchlorate (VIII, 7.8 g, 94.8%), mp 232-233° dec, ir (Nujol) 1721, 1621, 1553, 1493 cm⁻¹. To a stirred suspension of VIII (5.5 g, 0.01 mole) in EtOH (100 ml) was added dropwise a soln of NaBH₄ in EtOH (50 ml) at $-5-0^{\circ}$ during 4.5 hr. The mixt was concd under reduced pressure. The residue was poured into H₂O and extd with PhH, the PhH layer was dried and concd under reduced pressure to give a paste which was crystd by trituration with *i*·Pr₂O. The crystals were collected by filtration to afford almost pure 1X (2.7 g, 77%), mp 132-134°. Recrystn from *i*·PrOH gave pure sample as colorless prisms, mp 132-134°. *Anal.* (C₂₁H₂₅N₃O₂) C, H, N. The oxalate of IX melts at 135-137° which was recrystd from EtOH. *Anal.* (C₂₃H₂₇N₃O₆·0.5H₂O) C, H, N.

N-Ethylmorpholinoacetanilide (X). A soln of *N*-ethylchloroacetanilide (3 g) and morpholine (4 g) in PhH (100 ml) was re-

Potential Antidepressants

fluxed for 14 hr. After cooling, the mixt was washed with H_2O and extd with 10% HCl. The ext was made alk with K_2CO_3 and the oil which had sepd was extd with Et_2O . The ext was dried (K_2CO_3) and concd to dryness to give crude X as an oil. This was crystd as the oxalate. Recrystn from EtOH gave pure sample (2.8 g) as colorless prisms, mp 97-98° dec. Anal. ($C_{14}H_{20}N_2O_2 \cdot C_2H_2O_4 \cdot 0.5H_2O$) C, H; N: calcd, 8.06; found, 7.41.

2-(N·Ethylamino)-N'-methylbenzanilide. A mixt of N·ethylisatoic anhydride² (5.75 g) and PhNHMe (3.60 g) was heated at 100° for 4 hr. at 130° for 2 hr, and at 160° for 1 hr. The mixt which crystd on cooling was recrystd from *i*·PrOH to afford pure product (5.2 g, 64%) as colorless prisms, mp 97-99°. Anal. ($C_{16}H_{18}N_2O$) C, H, N.

2-(N-Ethylchloroacetamido)-N'-methylbenzanilide. To a stirred mixt of 2-(N-ethylamino)-N'-methylbenzanilide (4.0 g, 0.016 mole) and anhyd K_2CO_3 (4.0 g, 0.028 mole) in PhH (130 ml) was added dropwise ClCH₂COCl (2.8 g, 0.024 mole) at room temp during 10 min. The mixt was stirred at room temp for 1 hr and then washed with H₂O. The dried PhH layer was concd to dryness under reduced pressure and the crystalline residue was triturated with *i*-PrOH to afford almost pure product (4.4 g, 83%), mp 137-139°. Recrystn from *i*-PrOH gave a pure sample as colorless leaflets, mp 138-140°, nmr (CDCl₃) δ 1.15 (t, J = 8 Hz, 3 H), 3.23 (d, q, J = 16 Hz, 8 Hz, 1 H), 3.32 (broad s, 2 H), 3.44 (s, 3 H), 4.29 (d, q, J = 16 Hz, 8 Hz, 1 H), 6.9-7.5 (m, 9 H). Anal. (C₁₈H₁₉ClN₂O₂) C, H, N.

2-(N-Ethylmorpholinoacetamido)-N'-methylbenzanilide (XII). A soin of 2-(N-ethylchloroacetamido)-N'-methylbenzanilide (2.0 g, 0.006 mole) and morpholine (2.6 g, 0.03 mole) in PhH (30 ml) was warmed at 50° for 3 hr and then washed with H₂O. The dried PhH layer was concd to dryness under reduced pressure to give almost pure product as a colorless oil, nmr (CDCl₃) δ 1.13 (t, J = 7 Hz, 3 H), 2.46 (m, 4 H), 2.63 (s, 2 H), 3.19 (d, q, J = 14 Hz, 7 Hz, 1 H), 3.40 (s, 3 H), 3.65 (m, 4 H), 4.17 (d, q, J = 14 Hz, 7 Hz, 1 H), 6.9-7.5 (m, 9 H). 2-(Morpholinoacetamido)benzanilide (XI). A soln of 2-(chloroacetamido)benzanilide (5.57 g) and morpholine (4.3 g) in dioxane (180 ml) was stirred at 60-65° for 20 hr. The reaction mixt was concd under reduced pressure and the residue was poured into H₂O. The crystals were collected by filtration to give crude XI (6.9 g). Recrystn from dioxane afforded 6.2 g (94%) of XI as colorless prisms, mp 189-191°; the analytical sample melted at 190-192°. Anal. (C₁₉H₂₁N₃O₃) C, H, N. The hydrochloride was obtained as colorless needles (aqueous MeOH), mp 230-231° dec. Anal. (C₁₉H₂₁N₃O₃·HCl) C, H, N.

Acknowledgments. The authors wish to thank Mr. T. Takayanagi, Manager of Development Division, and Dr. K. Fujii for their encouragement.

References

- K. Okumura, T. Oine, Y. Yamada, G. Hayashi, M. Nakama, and T. Nose, *J. Med. Chem.*, 11, 788 (1968) (paper 2).
- (2) K. Okumura, T. Oine, Y. Yamada, G. Hayashi, and M. Nakama, *ibid.*, 11, 348 (1968).
- (3) G. Bonola, P. Da Re, M. J. Magistretti, E. Massarani, and I. Setnikar, *ibid.*, 11, 1136 (1968).
- (4) M. Pozzi, Farmaco Ed. Prat., 24, 655 (1969).
- (5) I. Setnikar and V. De Fina, Toxicol. Appl. Pharmacol., 16, 571 (1970).
- (6) I. Setnikar and M. J. Magistretti, Arzneim. Forsch., 20, 1559 (1970).
- (7) Y. V. Kozhevnikov and P. A. Petyunin, Khim. Geterotsikl. Soedin., 747 (1969).
- (8) R. N. Castle, K. Adachi, and W. D. Guither, J. Heterocycl. Chem., 2, 459 (1965).
- (9) G. S. Mewada, S. R. Patel, and N. M. Shah, J. Indian Chem., 32, 483 (1955).

Basic Ethers of 2-Anilinobenzothiazoles and 2-Anilinobenzoxazoles as Potential Antidepressants

C. J. Sharpe, * P. J. Palmer, D. E. Evans, G. R. Brown, Gillian King, R. S. Shadbolt, R. B. Trigg, R. J. Ward,

Chemistry Department

A. Ashford, and Janet W. Ross

Pharmacology Department, Twyford Laboratories Ltd., London N.W.10., England. Received September 1, 1971

Some 2- $[4-(\beta-tert-aminoethoxy)$ anilino]benzothiazoles and the corresponding benzoxazoles reversed reserpine-induced hypothermia in mice at low doses. The effects of structural variation of these molecules have been systematically examined. General pharmacology of selected compounds classifies them as antidepressants with a mild stimulant component. Anilinobenzazoles were advantageously prepared from substituted anilines and 2-chlorobenzazoles in DMF or *sym*-tetrachloroethane.

Routine pharmacological screening in these laboratories of compounds prepared for another purpose¹ revealed significant activity of 2-[4-(β -diethylaminoethoxy)phenyl]benzothiazole (1) in reversing reserpine-induced hypothermia in mice. This paper describes structural modifications leading to compounds having greatly increased antireserpine activity and a general pharmacological profile which suggests that they may be of value in depressive illness.

It soon became clear that in the 2-phenylbenzothiazole and 2-phenylbenzoxazole series, antireserpine activity was limited to a few basic ethers such as 1 in which a variety of substituents in the benzene ring did not greatly alter the activity. The 2'- and 3'-diethylaminoethoxy isomers of 1 were inactive, as were several 2-phenylbenzothiazoles having groups other than a basic ether in the 4' position. The introduction of bridging groups Y (Table I) between the benzazole and Ph rings led to the considerable increase in potency of the anilino basic ether 3, other N-containing bridging groups being less effective and those without N giving weak or inactive compds. Compd 3 has been reported to have hypocholesterolemic activity.² The importance of the anilino H atom is shown by the poor activity of the N-Me and N-Ac derivs 17 and 18.

Tests on intermediates (Table II) suggested that the basic structural unit required for antireserpine activity was p-ZNHC₆H₄O(CH₂)_nNR₂ and that potency was greatly increased when Z was an electron-attracting aromatic group. When Z was *p*-nitrophenyl the diphenylamine basic ether² 52, although a potent antireserpine compd, caused a severe stereotyped response in the cat (see below). Other nuclei employed as Z produced compds which, as potential antidepressants, had pharmacological profiles inferior to those of the anilinobenzazoles (*e. g.*, 3, 14). Since the benzimidazole 16 was almost inactive, further variations were made in the basic ethers of 2-anilinobenzothiazoles and benzoxazoles (Tables I and III).

^{*}Address correspondence to this author at 76 Elms Road, Harrow Weald, Middlesex, HA3 6BS, England.